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Abstract
Diffedge tool is a new methodology that eliminates the drawbacks of

finite-difference approximations and the complexity to use the automatic
differentiation. It combines the powerful of computer algebra system
and block diagram structures for computing the derivative of a Simulink
model with respect to the independent parameters. Diffedge calculates
the symbolic derivative of the mathematical models described in the
form of block diagram by the application of JM’s rules. The obtained
symbolic derivative is also represented in graphic form (block diagrams)
and can be used like any Simulink model. The benefits for the user
are numerous. We are remaining in the Simulink environment. Diffedge
does not require any task of programming and modification of the model.
The visualisation of the partial derivatives is possible for any coordinates
of the model. This presentation illustrates the capabilities of Diffedge ,
its implementation in the Matlab c©environment and some applications.

Keywords: Simulink differentiation, optimisation, identification protocol, paramet-
ric sensitivity and statistical analysis, Diffedge

Introduction
Although numerical simulation is more and more used to predict op-

eration of practical systems, its development remains one of the main
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Figure 1. Closed-loop model

challenges of the next coming years. In many fields, simulation will re-
duce drastically design development cost, for instance, by enabling to
build digital mock-up of systems in order to:

Understand static or dynamic behaviour,

Conduct fault tolerance tests for critical applications or for real
time when only a ”virtual” design is available,

Prepare test campaigns for real hardware,

Conduct parametric studies in order to choose an optimal design.

There are several possibilities to build a mathematical model. The
most popular of CACSD software is Matlab with its blocks diagrams
GUI (Simulink), covering the field of automatic control and optimisa-
tion. However, in many situations the size and complexity (hybrid sys-
tem, discontinuities, logical evens, strongly non-linear...) of the resulting
block diagrams make it difficult to apply computational technicals for
identification and optimal control. This is because the numerical gradi-
ent calculation of the optimizing function with respect to independent
parameters is in many cases inaccurate or wrong and unreliable because
of the truncation or cancellation errors.

1. Possibilities of Diffedge

In these situations it is preferable to rely on Diffedge. Diffedge is a new
methodology that eliminates the drawbacks of finite difference approx-
imations and the complexity of the automatic differentiation approach.
It combines the powerful of computer algebra system and block diagram
structures for computing the derivative of a Simulink model with respect
to the model parameters.

Diffedge calculates the symbolic derivative of the Simulink model de-
scribed in the form of block diagram (figure 1) by the application of
JM’s rules( Diffedge differentiation rules will be described in forthcoming
work). The obtained symbolic derivative is also represented in graphic
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Figure 2. First derivative of Closed-loop model with respect to k, k1, tau

form (block diagrams figure 2) and can be used like any Simulink model
and so; all functionalities of Simulink/Matlab can be used on the deriva-
tive models such as RTW c©.

The benefits for the user are numerous:

By remaining in the environment of simulation, it is possible to
obtain the second or higher order derivatives by applying Diffedge
again on the derivative model(figure 3) .

No additional programming is required and modification of the
model just necessitates the name of the mdl file and the list of the
parameters for which, one wishes to obtain the derived model.

The visualisation of the partial derivatives is possible for any co-
ordinate of the model (see figure 8).

This presentation illustrates the capabilities of Diffedge , its implemen-
tation in the Matlab environment. The fields cover by Diffedge are the
followings:

Analytic sensitivity and statistical analysis

Optimisation and identification

Fault detection for system monitoring in real-time

Calibrating and validating model (parameters and structure)

2. Diffedge and the toolboxes Matlab
Diffedge does not include the Extend Symbolic Math toolbox and the

Optimization toolbox of Matlab.
The computer algebra system is used for computing the symbolic

derivatives with respect to parameters. A large choice of optimisation
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Figure 3. Second derivative of Closed-loop model with respect to k, k1, tau

routines allows to try several algorithms. Consequently you can choose
the optimisation routines the most suitable for your model. This is
useful if you need to ensure that you use the best algorithm. In fact,
like the ODE solvers, no single method of optimisation suffices for all
systems. Diffedge provides the symbolic gradient, jacobian or hessian
of your model and embeds your optimisation routines. Diffedge is an
automatic tool for optimisation problems.

3. Diffedge and the integration strategy.
The mathematical models often contain discontinuities or nonlinear

blocks such as saturated integrator, switch, min, max, enable, trigger, ....
Simulink uses the zero crossing detection technique for checking and de-
tecting events or discontinuities. The advantage of Diffedge is to remain
in the same environment; we have access at the same functionality

This potentiality is interesting when you want to make parametric
sensitivity analysis in order to obtain information concerning parameter
variations in our hybrid model, for the most difficult point is to compute
the sensitivity function S(t, p) = ∂Y (t)

∂p and p denotes the parameter and
Y the model output.

The parametric sensitivity analysis will be unreliable if we don’t use a
satisfactory strategy integration and a symbolic derivative. Due to the
fact the sensitivities will often jump at the discontinuities, if the numer-
ical integration is not stopped and the jump computed explicitly, the
computed sensitivity trajectories will generally be incorrect (quantita-
tively and qualitatively). And also computing finite difference derivative
is not a good way when our model has discontinuities or noise, because
we cumulate the error in the finite difference of sensitivities due to the
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truncation error because the ODE integration is performed with limited
tolerance integration (rtol and atol). Another advantage of Diffedge
is to compute all the sensitivity trajectories in one time. A numerical
derivative requires, in order to compute the sensitivity functions with
the respect to np parameters, np + 1 numerical integrations. Also, the
user must ensure that the integration step size (for fixed step solvers),
selected for each simulation is appropriate for np+1 integrations and the
δp of each parameter is also appropriate. That is more complicated when
we use optimisation algorithm because the parameter values change for
each optimisation iteration. Furthermore the partial derivative comput-
ing with finite differences S(t, p) = Y (t,p+δp)−Y (t,p)

δp is valid as long as
δp is sufficiently small for producing substantially the same behaviour
of the simulation and it must not be too small with respect to inte-
gration tolerances otherwise the derivative is zero. In some cases, the
errors done by finite differences can introduce unacceptable inaccuracies
inS(t, p) .The use of symbolic derivative avoids all these drawbacks.

Diffedge allows to perform an accurate parametric sensitivity analysis
of system containing discontinuities and it provides an automatic script
that the user can apply to Simulink models in order to perform correctly
a sensitivity analysis more easily.

4. Diffedge and analytic sensitivity analysis
The main use of parametric sensibility analysis of Diffedge is to lo-

calize the instants where each parameter produces the maximum in-
fluence on outputs of our model. This knowledge is crucial when we
want to know the behaviour of the model and to predict the effect of
each parameter. The sensitivity analysis with the symbolic derivative
can be an essential help to find the optimal parameter values. This
sensitivity reflects the reliability of the mathematical model for the se-
lected trajectory with this tool, no information can escape the modeller’s
attention about of the structure of its mathematical model. The sym-
bolic statistical routine of Diffedge allows, under certain conditions, to
expand each output concerning the nominal solution in Taylor series
and truncated after the first-order or second-order terms. Diffedge as-
sume a Normal distribution for each parameter and for each instant of
the sensitivity trajectories. Thus, we obtain L(Pi) = N (mpi , σpi) −→
L(Y (t)) = N (m(t)yp i

, σ(t)ypi)with σpi
2 the variance and mpi the mean

value (or nominal value). Diffedge computes σypi
(Outputs RMS vector),

with only one simulation, and plots the RMS response over the model
response (Figure 2). Thus, at each instant, we obtain a confidence inter-
val. The maximum deviation shows the maximum sensitivity of studied
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Figure 4. Sensitivity response of parameters on the ouput

parameters. We can manage the resulting RMS response. (For example
we can sort by descending order the sensitivity of the parameters on the
outputs (table1)). When σypi

= 0, the parameter pi has no sensitivity
on the response Y (t).

4.1 An academic example
Our academic example is the following (Figure 1). The sensitivity

analysis method allows us to retrieve the following well-known property
of PI controller. The integral action in the feedback is responsible for
driving error to zero. Automatic control predicts that:

The gain k into the feedback has a limited influence during the
transient response like tau,

The parameter k1 outside the feedback has just an action on the
set point.

The resulting closed-loop step response is shown (Figure 4): We do find
the localized actions of each parameter on the response like we have
foreseen hereabove.
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Figure 5. Non linear model with graphic cost

For the sensitivity analysis, we assume a variation of ±10% for all
parameters. The table 1 gives for each parameter the RMS max and the
time when it occurs on the output. We can trust in these values because
the residue (Truncation error of the RMS) is small.

yout parameters mean rms max variat- rms error dy
dk

max inst.
order ion in % (residue) sec

1 cumulate 0.120619 10.7277 0.0072398 0.43525 4
sensitivity
k, k1, tau

2 k1 1 0.11629 9.99999 0 0.20802 4.6
3 k 1 0.060052 6.47287 0.002759 0.60052 3.2
4 tau 1 0.028210 4.25938 0.000645 0.53384 2.6

Table 1. Maximum Ypi RMS values sorted by descending order

On the table we see that a variation of 10% of k1 gives 10% (max) of
output variation at 4.6 seconds with a residue on the order of 0%. This
result confirms that the parameter is defining directly the set point.

This example has shown how with the symbolic derivative (figure 2
and 3) we can easily look for the effect and the localization action of
each parameter on the output of our model. When we work on large
model, this method is very useful and efficient for driving and is defining
precisely the best zone for computing the objective function.

5. Optimisation problem illustrating the Diffedge
methodology

Here, we adopt two points of view for optimising a Simulink model.
The first optimisation uses the classical finite-difference derivatives for



8

Figure 6. Compare optimization with a symbolic and numerical jacobian

computing the jacobian of the objective or constraints; the second uses
a symbolic jacobian computed by Diffedge.

Let’s say that you want to optimise the control parameters in the
simulink model (Figure 5)

The model includes a discontinuity (saturated integrator) and a strong
nonlinear function in the loop. The model output is yout and the ob-
jective function is y cost. The variables k, k1, k2 are the parameters we
are optimising.

The academic problem is to design a feedback control law or paramet-
ric identification that tracks our trajectory. Our goal in this problem is to
minimize the error between the output and the objective signal kobj = 4
and Cost =

∫
(yout− kobj)2dt.

We choose a variable-step solver (ODE15s) for solving the stiff sys-
tem (ODE). The integration is very fast because the solver follows the
dynamic of the model’s states.

Remark: Choosing a fixed step is not efficient and is consuming much
time. The fixed step has to be small when the dynamic of model’s state
is high and we loose our time when the dynamic decreases.

We compute the derivative model (figure 7) with the following syntax:

Diffedge(′derivative′, NameofMymdl, {′k′,′ k1′,′ k2′})
The figure 6 compares the numerical optimisation with the symbolic
one (symbolic jacobian) for the same optimisation routine and the same
optimisation parameter set-up. The two solutions do not converge to
the steady state.



Differentiation, sensitivity analysis and identification of hybrid Models 9

Figure 7. Result of Diffedge : Derivative model with respect to k, k1, k2

Figure 8. Zoom of Fcn : Symbolic derivative of block Fcn : tanh(k1 ∗ u)/2

The symbolic gradient is more efficient, the minimization of error
is better. This is due to the numerical derivative which is difficult to
compute and is unreliable because the choice of (for k, k1, k2) is very
difficult in this case and the search direction may be wrong or too weak.
The optimisation algorithm stops before the end of the minimization.

6. Conclusion
Diffedge’s tool with its analytic statistic toolbox covers many domains.

This new tool brings another way to study hybrid models. Diffedge
increases flexibility in mathematical information management and also
end-user benefits. The use of this kind of software will probably increase
during the coming years as it allows research teams to test easily new
sensitivity methods or optimisation algorithms and it facilitates transfer
to industrial users.

There are numerous benefits: Reduced product cost and mainly easier
innovation, etc.
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Diffedge has already demonstrated its ability to apply an industrial ex-
ample with success: The PSA model contains more than 600 blocks (like
sign, abs, trigger, enable, look-up table,...) and more than 70 parame-
ters. All the optimisation methods used previously with numerical gra-
dient or without derivative do not always work with efficiency. Diffedge
allows to explore process and gain more knowledge of very complicated
models. Diffedge becomes now an indispensable tool for studying block-
diagram models.

Copyright c©Matlab/Simulink, RTW, Matlab Toolbox : are reg-
istred Trademarks of The Mathworks
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